Description
Pretrained Lemmatizer model (lemma_ewt) trained on Universal Dependencies 2.9 (UD_English-EWT) in English language.
Open in Colab Download Copy S3 URI
How to use
document = DocumentAssembler()\ 
.setInputCol("text")\ 
.setOutputCol("document")
sentence = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\ 
.setInputCols(["document"])\ 
.setOutputCol("sentence")
tokenizer = Tokenizer()\ 
.setInputCols(["sentence"])\ 
.setOutputCol("token") 
lemma = LemmatizerModel.pretrained("lemma_ewt", "en")\ 
.setInputCols(["token"])\
.setOutputCol("lemma")
pipeline = Pipeline(stages=[document, sentence, tokenizer, lemma])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val document = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer() 
.setInputCols("sentence") 
.setOutputCol("token")
val lemma = LemmatizerModel.pretrained("lemma_ewt", "en")
.setInputCols("token")
.setOutputCol("lemma")
val pipeline = new Pipeline().setStages(Array(document, sentence, tokenizer, lemma))
val data = Seq("I love Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.lemma.ewt").predict("""I love Spark NLP""")
Model Information
| Model Name: | lemma_ewt | 
| Compatibility: | Spark NLP 3.4.3+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [form] | 
| Output Labels: | [lemma] | 
| Language: | en | 
| Size: | 257.9 KB | 
References
Model is trained on Universal Dependencies (treebank 2.9) UD_English-EWT
https://github.com/UniversalDependencies/UD_English-EWT