Description
Pretrained Lemmatizer model (lemma_mudt) trained on Universal Dependencies 2.9 (UD_Maltese-MUDT) in Maltese language.
Open in Colab Download Copy S3 URI
How to use
document = DocumentAssembler()\ 
.setInputCol("text")\ 
.setOutputCol("document")
sentence = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\ 
.setInputCols(["document"])\ 
.setOutputCol("sentence")
tokenizer = Tokenizer()\ 
.setInputCols(["sentence"])\ 
.setOutputCol("token") 
lemma = LemmatizerModel.pretrained("lemma_mudt", "mt")\ 
.setInputCols(["token"])\
.setOutputCol("lemma")
pipeline = Pipeline(stages=[document, sentence, tokenizer, lemma])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val document = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer() 
.setInputCols("sentence") 
.setOutputCol("token")
val lemma = LemmatizerModel.pretrained("lemma_mudt", "mt")
.setInputCols("token")
.setOutputCol("lemma")
val pipeline = new Pipeline().setStages(Array(document, sentence, tokenizer, lemma))
val data = Seq("I love Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("mt.lemma").predict("""I love Spark NLP""")
Model Information
| Model Name: | lemma_mudt | 
| Compatibility: | Spark NLP 3.4.3+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [form] | 
| Output Labels: | [lemma] | 
| Language: | mt | 
| Size: | 93.6 KB | 
References
Model is trained on Universal Dependencies (treebank 2.9) UD_Maltese-MUDT
https://github.com/UniversalDependencies/UD_Maltese-MUDT