Description
Pretrained Named Entity Recognition model, uploaded to Hugging Face, adapted and imported into Spark NLP. roberta-fa-zwnj-base-ner is a Persian model orginally trained by HooshvareLab.
Predicted Entities
PRO, PCT, PER, ORG, DAT, TIM, EVE, FAC, LOC, MON
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = RoBertaForTokenClassification.pretrained("roberta_ner_roberta_fa_zwnj_base_ner","fa") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["من عاشق جرقه nlp هستم"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = RoBertaForTokenClassification.pretrained("roberta_ner_roberta_fa_zwnj_base_ner","fa")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("من عاشق جرقه nlp هستم").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("fa.ner.roberta_fa_zwnj_base_ner").predict("""من عاشق جرقه nlp هستم""")
Model Information
| Model Name: | roberta_ner_roberta_fa_zwnj_base_ner |
| Compatibility: | Spark NLP 3.4.2+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | fa |
| Size: | 442.7 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
- https://huggingface.co/HooshvareLab/roberta-fa-zwnj-base-ner
- https://github.com/HaniehP/PersianNER
- http://nsurl.org/2019-2/tasks/task-7-named-entity-recognition-ner-for-farsi/
- https://elisa-ie.github.io/wikiann/
- https://github.com/hooshvare/parsner/issues