Portuguese Named Entity Recognition (from m-lin20)

Description

Pretrained Named Entity Recognition model, uploaded to Hugging Face, adapted and imported into Spark NLP. satellite-instrument-roberta-NER is a Portuguese model orginally trained by m-lin20.

Predicted Entities

instrument, satellite

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")

sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")

tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")

tokenClassifier = RoBertaForTokenClassification.pretrained("roberta_ner_satellite_instrument_roberta_NER","pt") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")

pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])

data = spark.createDataFrame([["Eu amo Spark NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
.setInputCol("text") 
.setOutputCol("document")

val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")

val tokenizer = new Tokenizer() 
.setInputCols(Array("sentence"))
.setOutputCol("token")

val tokenClassifier = RoBertaForTokenClassification.pretrained("roberta_ner_satellite_instrument_roberta_NER","pt") 
.setInputCols(Array("sentence", "token")) 
.setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))

val data = Seq("Eu amo Spark NLP").toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("pt.ner.satellite_instrument_roberta_NER").predict("""Eu amo Spark NLP""")

Model Information

Model Name: roberta_ner_satellite_instrument_roberta_NER
Compatibility: Spark NLP 3.4.2+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [ner]
Language: pt
Size: 1.3 GB
Case sensitive: true
Max sentence length: 128

References

  • https://huggingface.co/m-lin20/satellite-instrument-roberta-NER
  • https://github.com/Tsinghua-mLin/satellite-instrument-NER