English financial Word Embeddings (Roberta, Financial Phrasebank Corpus)

Description

Financial Pretrained Roberta Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. abhilash1910/financial_roberta is a English Financial model orginally trained upon Financial Phrasebank Corpus.

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")

tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")

embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_financial","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["I Love Spark-NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
  .setInputCol("text") 
  .setOutputCol("document")

val tokenizer = new Tokenizer() 
.setInputCols(Array("document"))
.setOutputCol("token")

val embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_financial","en") 
.setInputCols(Array("document", "token")) 
.setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))

val data = Seq("I Love Spark-NLP").toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.embed.roberta.financial").predict("""I Love Spark-NLP""")

Model Information

Model Name: roberta_embeddings_financial
Compatibility: Spark NLP 3.4.2+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [embeddings]
Language: en
Size: 324.5 MB
Case sensitive: true