Description
Financial Pretrained Roberta Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. abhilash1910/financial_roberta
is a English Financial model orginally trained upon Financial Phrasebank Corpus.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_financial","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["I Love Spark-NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_financial","en")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("I Love Spark-NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.embed.roberta.financial").predict("""I Love Spark-NLP""")
Model Information
Model Name: | roberta_embeddings_financial |
Compatibility: | Spark NLP 3.4.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [embeddings] |
Language: | en |
Size: | 324.5 MB |
Case sensitive: | true |