Description
Pretrained Named Entity Recognition model, uploaded to Hugging Face, adapted and imported into Spark NLP. bert-base-parsbert-peymaner-uncased
is a Persian model orginally trained by HooshvareLab
.
Predicted Entities
LOC
, PER
, TIM
, MON
, DAT
, PCT
, ORG
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_bert_base_parsbert_peymaner_uncased","fa") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["من عاشق جرقه nlp هستم"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_bert_base_parsbert_peymaner_uncased","fa")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("من عاشق جرقه nlp هستم").toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | bert_ner_bert_base_parsbert_peymaner_uncased |
Compatibility: | Spark NLP 3.4.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | fa |
Size: | 607.0 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/HooshvareLab/bert-base-parsbert-peymaner-uncased
- https://arxiv.org/abs/2005.12515
- http://nsurl.org/tasks/task-7-named-entity-recognition-ner-for-farsi/
- https://github.com/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb
- https://colab.research.google.com/github/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb
- https://arxiv.org/abs/2005.12515
- https://tensorflow.org/tfrc
- https://hooshvare.com
- https://www.linkedin.com/in/m3hrdadfi/
- https://twitter.com/m3hrdadfi
- https://github.com/m3hrdadfi
- https://www.linkedin.com/in/mohammad-gharachorloo/
- https://twitter.com/MGharachorloo
- https://github.com/baarsaam
- https://www.linkedin.com/in/marziehphi/
- https://twitter.com/marziehphi
- https://github.com/marziehphi
- https://www.linkedin.com/in/mohammad-manthouri-aka-mansouri-07030766/
- https://twitter.com/mmanthouri
- https://github.com/mmanthouri
- https://hooshvare.com/
- https://www.linkedin.com/company/hooshvare
- https://twitter.com/hooshvare
- https://github.com/hooshvare
- https://www.instagram.com/hooshvare/
- https://www.linkedin.com/in/sara-tabrizi-64548b79/
- https://www.behance.net/saratabrizi
- https://www.instagram.com/sara_b_tabrizi/