Description
Pretrained Named Entity Recognition model, uploaded to Hugging Face, adapted and imported into Spark NLP. docusco-bert
is a English model orginally trained by browndw
.
Predicted Entities
Interactive
, AcademicTerms
, InformationChange
, MetadiscourseCohesive
, FirstPerson
, InformationPlace
, Updates
, InformationChangeneritive
, Reasoning
, PublicTerms
, Citation
, Future
, CitationHedged
, InformationExnerition
, Contingent
, Strategic
, PAD
, CitationAuthority
, Facilitate
, Positive
, ConfidenceHigh
, InformationStates
, AcademicWritingMoves
, Uncertainty
, SyntacticComplexity
, Responsibility
, Character
, Narrative
, MetadiscourseInteractive
, InformationTopics
, ConfidenceLow
, ConfidenceHedged
, ForceStressed
, Negative
, InformationChangeNegative
, Description
, Inquiry
, InformationReportVerbs
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_docusco_bert","en") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_docusco_bert","en")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("I love Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.ner.bert.by_browndw").predict("""I love Spark NLP""")
Model Information
Model Name: | bert_ner_docusco_bert |
Compatibility: | Spark NLP 3.4.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | en |
Size: | 404.4 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/browndw/docusco-bert
- https://www.english-corpora.org/coca/
- https://www.cmu.edu/dietrich/english/research-and-publications/docuscope.html
- https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=docuscope&btnG=
- https://graphics.cs.wisc.edu/WP/vep/2017/02/14/guest-post-data-mining-king-lear/
- https://journals.sagepub.com/doi/full/10.1177/2055207619844865
- https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)
- https://www.english-corpora.org/coca/
- https://arxiv.org/pdf/1810.04805