Description
Pretrained Named Entity Recognition model, uploaded to Hugging Face, adapted and imported into Spark NLP. literary-german-bert
is a German model orginally trained by severinsimmler
.
Predicted Entities
PER
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_literary_german_bert","de") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["Ich liebe Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_literary_german_bert","de")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("Ich liebe Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("de.ner.literary.bert.by_severinsimmler").predict("""Ich liebe Spark NLP""")
Model Information
Model Name: | bert_ner_literary_german_bert |
Compatibility: | Spark NLP 3.4.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | de |
Size: | 410.4 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/severinsimmler/literary-german-bert
- https://figshare.com/articles/Corpus_of_German-Language_Fiction_txt_/4524680/1
- https://gitlab2.informatik.uni-wuerzburg.de/kallimachos/DROC-Release
- https://figshare.com/articles/Corpus_of_German-Language_Fiction_txt_/4524680/1
- https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/14333/file/Jannidis_Figurenerkennung_Roman.pdf
- http://webdoc.sub.gwdg.de/pub/mon/dariah-de/dwp-2018-27.pdf
- https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/14333/file/Jannidis_Figurenerkennung_Roman.pdf