Description
Pretrained Electra Embeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. electra-base-generator
is a English model orginally trained by google
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = BertEmbeddings.pretrained("electra_embeddings_electra_base_generator","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = BertEmbeddings.pretrained("electra_embeddings_electra_base_generator","en")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("I love Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.embed.electra.base").predict("""I love Spark NLP""")
Model Information
Model Name: | electra_embeddings_electra_base_generator |
Compatibility: | Spark NLP 3.4.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [embeddings] |
Language: | en |
Size: | 126.4 MB |
Case sensitive: | true |
References
- https://huggingface.co/google/electra-base-generator
- https://arxiv.org/pdf/1406.2661.pdf
- https://rajpurkar.github.io/SQuAD-explorer/
- https://openreview.net/pdf?id=r1xMH1BtvB
- https://gluebenchmark.com/
- https://rajpurkar.github.io/SQuAD-explorer/
- https://www.clips.uantwerpen.be/conll2000/chunking/