Description
Pretrained CamemBert Embeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. dummy-model is a French model orginally trained by adam1224.
How to use
documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")
  
embeddings = CamemBertEmbeddings.pretrained("camembert_embeddings_adam1224_generic_model","fr") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("embeddings")
    
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["J'adore Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
      .setInputCol("text") 
      .setOutputCol("document")
 
val tokenizer = new Tokenizer() 
    .setInputCols(Array("document"))
    .setOutputCol("token")
val embeddings = CamemBertEmbeddings.pretrained("camembert_embeddings_adam1224_generic_model","fr") 
    .setInputCols(Array("document", "token")) 
    .setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("J'adore Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("fr.embed.camembert.generic.by_adam1224").predict("""J'adore Spark NLP""")
Model Information
| Model Name: | camembert_embeddings_adam1224_generic_model | 
| Compatibility: | Spark NLP 3.4.4+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [sentence, token] | 
| Output Labels: | [embeddings] | 
| Language: | fr | 
| Size: | 266.8 MB | 
| Case sensitive: | true | 
References
- https://huggingface.co/adam1224/dummy-model