Description
The T5 transformer model is described in the seminal paper “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”. This model can perform a variety of tasks, such as text summarization, question answering, and translation. More details about using the model can be found in the paper (https://arxiv.org/pdf/1910.10683.pdf).
Predicted Entities
Open in Colab Download Copy S3 URI
How to use
Either set the following tasks or have them in line with your input:
- summarize:
- translate English to German:
- translate English to French:
- stsb sentence1: Big news. sentence2: No idea.
The full list of tasks is in the Appendix of the paper: https://arxiv.org/pdf/1910.10683.pdf
document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")
t5 = T5Transformer() \
.pretrained("t5_base") \
.setTask("summarize:")\
.setMaxOutputLength(200)\
.setInputCols(["documents"]) \
.setOutputCol("summaries")
pipeline = Pipeline().setStages([document_assembler, t5])
results = pipeline.fit(data_df).transform(data_df)
results.select("summaries.result").show(truncate=False)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("documents")
val t5 = T5Transformer
.pretrained("t5_base")
.setTask("summarize:")
.setInputCols(Array("documents"))
.setOutputCol("summaries")
val pipeline = new Pipeline().setStages(Array(documentAssembler, t5))
val model = pipeline.fit(dataDf)
val results = model.transform(dataDf)
results.select("summaries.result").show(truncate = false)
import nlu
nlu.load("en.t5.base").predict("""Put your text here.""")
Model Information
Model Name: | t5_base |
Compatibility: | Spark NLP 4.0.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [documents] |
Output Labels: | [t5] |
Language: | en |
Size: | 473.7 MB |
References
https://huggingface.co/t5-base