Named Entity Recognition - CoNLL03 DeBERTa Large (nerdl_conll_deberta_large)

Description

nerdl_conll_deberta_large is a Named Entity Recognition (or NER) model, meaning it annotates text to find features like the names of people, places, and organizations. It was trained on the CoNLL 2003 text corpus. This NER model does not read words directly but instead reads word embeddings, which represent words as points such that more semantically similar words are closer together. nerdl_conll_deberta_large model is trained with the deberta_v3_large word embeddings, so be sure to use the same embeddings in the pipeline.

Predicted Entities

PER, LOC, ORG, MISC

Live Demo Open in Colab Download Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
    .setInputCol('text') \
    .setOutputCol('document')

tokenizer = Tokenizer() \
    .setInputCols(['document']) \
    .setOutputCol('token')

embeddings = DeBertaEmbeddings.pretrained("deberta_v3_large", "en")\
      .setInputCols(["token", "document"])\
      .setOutputCol("embeddings")\
      .setCaseSensitive(True)\
      .setMaxSentenceLength(512)

ner_model = NerDLModel.pretrained('nerdl_conll_deberta_large', 'en') \
    .setInputCols(['document', 'token', 'embeddings']) \
    .setOutputCol('ner')

ner_converter = NerConverter() \
    .setInputCols(['document', 'token', 'ner']) \
    .setOutputCol('entities')

pipeline = Pipeline(stages=[
    document_assembler, 
    tokenizer,
    embeddings,
    ner_model,
    ner_converter
])

example = spark.createDataFrame([['My name is John!']]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")

val tokenizer = Tokenizer() 
    .setInputCols("document") 
    .setOutputCol("token")

val embeddings = DeBertaEmbeddings.pretrained("deberta_v3_large", "en")
    .setInputCols("document", "token") 
    .setOutputCol("embeddings")
    .setCaseSensitive(true)
    .setMaxSentenceLength(512)

val ner_model = NerDLModel.pretrained("nerdl_conll_deberta_large", "en") 
    .setInputCols("document"', "token", "embeddings") 
    .setOutputCol("ner")

val ner_converter = NerConverter() 
    .setInputCols("document", "token", "ner") 
    .setOutputCol("entities")

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, embeddings, ner_model, ner_converter))

val example = Seq.empty["My name is John!"].toDS.toDF("text")

val result = pipeline.fit(example).transform(example)
import nlu

text = ["My name is John!"]

ner_df = nlu.load('en.ner.nerdl_conll_deberta_large').predict(text, output_level='token')

Model Information

Model Name: nerdl_conll_deberta_large
Type: ner
Compatibility: Spark NLP 4.0.0+
License: Open Source
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en
Size: 16.9 MB

References

https://www.clips.uantwerpen.be/conll2003/ner/

Benchmarking

Test:

       label  precision    recall  f1-score   support
       B-LOC       0.94      0.93      0.93      1668
       I-ORG       0.88      0.94      0.91       835
      I-MISC       0.72      0.74      0.73       216
       I-LOC       0.86      0.89      0.88       257
       I-PER       0.99      0.99      0.99      1156
      B-MISC       0.84      0.83      0.83       702
       B-ORG       0.90      0.93      0.91      1661
       B-PER       0.98      0.97      0.97      1617
   micro-avg       0.92      0.93      0.93      8112
weighted-avg       0.92      0.93      0.93      8112


Dev:
                                                                                
       label  precision    recall  f1-score   support
       B-LOC       0.96      0.97      0.97      1837
       I-ORG       0.93      0.95      0.94       751
      I-MISC       0.91      0.82      0.86       346
       I-LOC       0.95      0.93      0.94       257
       I-PER       0.99      0.98      0.98      1307
      B-MISC       0.94      0.89      0.92       922
       B-ORG       0.93      0.95      0.94      1341
       B-PER       0.98      0.99      0.98      1842
   micro-avg       0.96      0.96      0.96      8603
weighted-avg       0.96      0.96      0.96      8603