English BertForQuestionAnswering model (from Sotireas)

Description

Pretrained Question Answering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT is a English model orginally trained by Sotireas.

Download Copy S3 URI

How to use

document_assembler = MultiDocumentAssembler() \ 
    .setInputCols(["question", "context"]) \
    .setOutputCols(["document_question", "document_context"])

spanClassifier = BertForQuestionAnswering.pretrained("bert_qa_Sotireas_BiomedNLP_PubMedBERT_base_uncased_abstract_fulltext_ContaminationQAmodel_PubmedBERT","en") \
    .setInputCols(["document_question", "document_context"]) \
    .setOutputCol("answer") \
    .setCaseSensitive(True)

pipeline = Pipeline().setStages([
    document_assembler,
    spanClassifier
])

example = spark.createDataFrame([["What's my name?", "My name is Clara and I live in Berkeley."]]).toDF("question", "context")

result = pipeline.fit(example).transform(example)
val document = new MultiDocumentAssembler()
  .setInputCols("question", "context")
  .setOutputCols("document_question", "document_context")

val spanClassifier = BertForQuestionAnswering
  .pretrained("bert_qa_Sotireas_BiomedNLP_PubMedBERT_base_uncased_abstract_fulltext_ContaminationQAmodel_PubmedBERT","en")
  .setInputCols(Array("document_question", "document_context"))
  .setOutputCol("answer")
  .setCaseSensitive(true)
  .setMaxSentenceLength(512)

val pipeline = new Pipeline().setStages(Array(document, spanClassifier))

val example = Seq(
  ("Where was John Lenon born?", "John Lenon was born in London and lived in Paris. My name is Sarah and I live in London."),
  ("What's my name?", "My name is Clara and I live in Berkeley."))
  .toDF("question", "context")

val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("en.answer_question.pubmed.bert.base_uncased").predict("""What's my name?|||"My name is Clara and I live in Berkeley.""")

Model Information

Model Name: bert_qa_Sotireas_BiomedNLP_PubMedBERT_base_uncased_abstract_fulltext_ContaminationQAmodel_PubmedBERT
Compatibility: Spark NLP 4.0.0+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [embeddings]
Language: en
Size: 408.7 MB
Case sensitive: false
Max sentence length: 512

References

  • https://huggingface.co/Sotireas/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT