English RobertaForQuestionAnswering (from squirro)

Description

Pretrained Question Answering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. distilroberta-base-squad_v2 is a English model originally trained by squirro.

Download Copy S3 URI

How to use

document_assembler = MultiDocumentAssembler() \ 
.setInputCols(["question", "context"]) \
.setOutputCols(["document_question", "document_context"])

spanClassifier = RoBertaForQuestionAnswering.pretrained("roberta_qa_distilroberta_base_squad_v2","en") \
.setInputCols(["document_question", "document_context"]) \
.setOutputCol("answer") \
.setCaseSensitive(True)

pipeline = Pipeline().setStages([
document_assembler,
spanClassifier
])

example = spark.createDataFrame([["What's my name?", "My name is Clara and I live in Berkeley."]]).toDF("question", "context")

result = pipeline.fit(example).transform(example)
val document = new MultiDocumentAssembler()
.setInputCols("question", "context")
.setOutputCols("document_question", "document_context")

val spanClassifier = RoBertaForQuestionAnswering
.pretrained("roberta_qa_distilroberta_base_squad_v2","en")
.setInputCols(Array("document_question", "document_context"))
.setOutputCol("answer")
.setCaseSensitive(true)
.setMaxSentenceLength(512)

val pipeline = new Pipeline().setStages(Array(document, spanClassifier))

val example = Seq(
("Where was John Lenon born?", "John Lenon was born in London and lived in Paris. My name is Sarah and I live in London."),
("What's my name?", "My name is Clara and I live in Berkeley."))
.toDF("question", "context")

val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("en.answer_question.squadv2.roberta.distilled_base_v2").predict("""What's my name?|||"My name is Clara and I live in Berkeley.""")

Model Information

Model Name: roberta_qa_distilroberta_base_squad_v2
Compatibility: Spark NLP 4.0.0+
License: Open Source
Edition: Official
Input Labels: [question, context]
Output Labels: [answer]
Language: en
Size: 307.0 MB
Case sensitive: true
Max sentence length: 512

References

  • https://huggingface.co/squirro/distilroberta-base-squad_v2
  • https://paperswithcode.com/sota?task=Question+Answering&dataset=The+Stanford+Question+Answering+Dataset
  • https://www.linkedin.com/showcase/the-squirro-academy
  • https://twitter.com/Squirro
  • https://www.instagram.com/squirro/
  • http://squirro.com
  • https://www.linkedin.com/company/squirroag
  • https://www.facebook.com/squirro
  • https://rajpurkar.github.io/SQuAD-explorer/