Description
Pretrained Question Answering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. chinese-pert-large-open-domain-mrc
is a Chinese model originally trained by qalover
.
How to use
documentAssembler = MultiDocumentAssembler() \
.setInputCols(["question", "context"]) \
.setOutputCols(["document_question", "document_context"])
spanClassifier = BertForQuestionAnswering.pretrained("bert_qa_chinese_pert_large_open_domain_mrc","zh") \
.setInputCols(["document_question", "document_context"]) \
.setOutputCol("answer")\
.setCaseSensitive(True)
pipeline = Pipeline(stages=[documentAssembler, spanClassifier])
data = spark.createDataFrame([["PUT YOUR QUESTION HERE", "PUT YOUR CONTEXT HERE"]]).toDF("question", "context")
result = pipeline.fit(data).transform(data)
val documentAssembler = new MultiDocumentAssembler()
.setInputCols(Array("question", "context"))
.setOutputCols(Array("document_question", "document_context"))
val spanClassifer = BertForQuestionAnswering.pretrained("bert_qa_chinese_pert_large_open_domain_mrc","zh")
.setInputCols(Array("document", "token"))
.setOutputCol("answer")
.setCaseSensitive(true)
val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))
val data = Seq("PUT YOUR QUESTION HERE", "PUT YOUR CONTEXT HERE").toDF("question", "context")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("zh.answer_question.bert.large").predict("""PUT YOUR QUESTION HERE|||"PUT YOUR CONTEXT HERE""")
Model Information
Model Name: | bert_qa_chinese_pert_large_open_domain_mrc |
Compatibility: | Spark NLP 4.0.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document_question, document_context] |
Output Labels: | [answer] |
Language: | zh |
Size: | 1.2 GB |
Case sensitive: | true |
Max sentence length: | 512 |
References
- https://huggingface.co/qalover/chinese-pert-large-open-domain-mrc
- https://github.com/dbiir/UER-py/