Description
Pretrained Question Answering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. ukrainian-qa
is a Ukrainian model originally trained by robinhad
.
How to use
documentAssembler = MultiDocumentAssembler() \
.setInputCols(["question", "context"]) \
.setOutputCols(["document_question", "document_context"])
spanClassifier = XlmRoBertaForQuestionAnswering.pretrained("xlmroberta_qa_ukrainian","uk") \
.setInputCols(["document_question", "document_context"]) \
.setOutputCol("answer")\
.setCaseSensitive(True)
pipeline = Pipeline(stages=[documentAssembler, spanClassifier])
data = spark.createDataFrame([["Як мене звати?", "Мене звуть Клара, і я живу в Берклі."]]).toDF("question", "context")
result = pipeline.fit(data).transform(data)
val documentAssembler = new MultiDocumentAssembler()
.setInputCols(Array("question", "context"))
.setOutputCols(Array("document_question", "document_context"))
val spanClassifer = XlmRoBertaForQuestionAnswering.pretrained("xlmroberta_qa_ukrainian","uk")
.setInputCols(Array("document", "token"))
.setOutputCol("answer")
.setCaseSensitive(true)
val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))
val data = Seq("Як мене звати?", "Мене звуть Клара, і я живу в Берклі.").toDF("question", "context")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("uk.answer_question.xlmr_roberta").predict("""Як мене звати?|||"Мене звуть Клара, і я живу в Берклі.""")
Model Information
Model Name: | xlmroberta_qa_ukrainian |
Compatibility: | Spark NLP 4.0.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document_question, document_context] |
Output Labels: | [answer] |
Language: | uk |
Size: | 402.0 MB |
Case sensitive: | true |
Max sentence length: | 512 |
References
- https://huggingface.co/robinhad/ukrainian-qa
- https://github.com/fido-ai/ua-datasets/tree/main/ua_datasets/src/question_answering
- https://github.com/robinhad/ukrainian-qa