Arabic BertForQuestionAnswering Cased model (from wonfs)

Description

Pretrained Question Answering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. arabert-v2-qa is a Arabic model originally trained by wonfs.

Download Copy S3 URI

How to use

documentAssembler = MultiDocumentAssembler() \
    .setInputCols(["question", "context"]) \
    .setOutputCols(["document_question", "document_context"])

spanClassifier = BertForQuestionAnswering.pretrained("bert_qa_arabert_v2","ar") \
    .setInputCols(["document_question", "document_context"]) \
    .setOutputCol("answer")\
    .setCaseSensitive(True)
    
pipeline = Pipeline(stages=[documentAssembler, spanClassifier])

data = spark.createDataFrame([["ما هو اسمي؟", "اسمي كلارا وأنا أعيش في بيركلي."]]).toDF("question", "context")

result = pipeline.fit(data).transform(data)
val documentAssembler = new MultiDocumentAssembler() 
      .setInputCols(Array("question", "context")) 
      .setOutputCols(Array("document_question", "document_context"))
 
val spanClassifer = BertForQuestionAnswering.pretrained("bert_qa_arabert_v2","ar") 
    .setInputCols(Array("document", "token")) 
    .setOutputCol("answer")
    .setCaseSensitive(true)

val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))

val data = Seq("ما هو اسمي؟", "اسمي كلارا وأنا أعيش في بيركلي.").toDF("question", "context")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: bert_qa_arabert_v2
Compatibility: Spark NLP 4.0.0+
License: Open Source
Edition: Official
Input Labels: [document_question, document_context]
Output Labels: [answer]
Language: ar
Size: 505.5 MB
Case sensitive: true
Max sentence length: 512

References

  • https://huggingface.co/wonfs/arabert-v2-qa