Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. IDRISI-LMR-HD-TB-partition is a English model originally trained by rsuwaileh.
Predicted Entities
L-ST, CTRY, L-HPOI, CNTY, U-OTHR, L-ISL, OTHR, U-HPOI, L-CNTY, CITY, L-CTRY, L-DIST, U-STAT, CONT, NBHD, L-NBHD, L-STAT, U-ST, L-CITY, NPOI, ST, ISL, U-NBHD, STAT, L-NPOI, HPOI, U-CNTY, L-OTHR, U-ISL, U-CTRY, L-CONT, U-CONT, U-NPOI, U-DIST, U-CITY, DIST
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_IDRISI_LMR_HD_TB_partition","en") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_IDRISI_LMR_HD_TB_partition","en")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_ner_IDRISI_LMR_HD_TB_partition |
| Compatibility: | Spark NLP 4.0.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | en |
| Size: | 1.2 GB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
- https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB-partition
- https://github.com/rsuwaileh/IDRISI
- https://github.com/rsuwaileh/TLLMR4CM/
- https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/hurricane_dorian_2019