English BertForTokenClassification Cased model (from rsuwaileh)

Description

Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. IDRISI-LMR-HD-TL is a English model originally trained by rsuwaileh.

Predicted Entities

U-LOC, LOC, L-LOC

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
        .setInputCol("text") \
        .setOutputCol("document")

sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
        .setInputCols(["document"])\
        .setOutputCol("sentence")

tokenizer = Tokenizer() \
        .setInputCols("sentence") \
        .setOutputCol("token")

tokenClassifier = BertForTokenClassification.pretrained("bert_ner_IDRISI_LMR_HD_TL","en") \
        .setInputCols(["sentence", "token"]) \
        .setOutputCol("pos")

pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
        .setInputCol("text") 
        .setOutputCol("document")

val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
        .setInputCols(Array("document"))
        .setOutputCol("sentence")

val tokenizer = new Tokenizer() 
        .setInputCols(Array("sentence"))
        .setOutputCol("token")

val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_IDRISI_LMR_HD_TL","en") 
        .setInputCols(Array("sentence", "token")) 
        .setOutputCol("pos")

val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))

val data = Seq("PUT YOUR STRING HERE").toDF("text")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: bert_ner_IDRISI_LMR_HD_TL
Compatibility: Spark NLP 4.0.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [ner]
Language: en
Size: 1.2 GB
Case sensitive: true
Max sentence length: 128

References

  • https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL