Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-cased-sem is a English model originally trained by QCRI.
Predicted Entities
ALT, CON, ENT, EXN, MOR, RLI, EMP, ROL, DEF, FUT, DOM, EXS, UNK, UOM, EQA, EPG, EXG, ART, LES, NAT, DEC, EPT, QUE, TOP, MOY, NEC, QUA, PRO, PST, DIS, COO, DST, IMP, ORG, REF, COM, SUB, PER, ETV, EPS, EXC, DOW, APP, INT, PRX, BUT, NOT, EXT, NOW, POS, LOC, AND, HAS, EFS, ENS, REL, NIL, HAP, YOC, IST, GPE, ITJ, SCO, EXV, ENG, ETG, TIM
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_bert_base_cased_sem","en") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_bert_base_cased_sem","en")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.ner.bert.cased_base.by_qcri").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | bert_ner_bert_base_cased_sem |
| Compatibility: | Spark NLP 4.0.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | en |
| Size: | 404.4 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
- https://huggingface.co/QCRI/bert-base-cased-sem