Indonesian BertForTokenClassification Base Cased model (from cahya)

Description

Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-indonesian-NER is a Indonesian model originally trained by cahya.

Predicted Entities

PRD, QTY, LAW, DAT, PRC, FAC, WOA, ORG, ORD, PER, NOR, LOC, EVT, REG, MON, GPE, LAN, CRD, TIM

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
        .setInputCol("text") \
        .setOutputCol("document")

sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
       .setInputCols(["document"])\
       .setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols("sentence") \
    .setOutputCol("token")

tokenClassifier = BertForTokenClassification.pretrained("bert_ner_bert_base_indonesian_NER","id") \
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("ner")

pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])

data = spark.createDataFrame([["Saya suka Spark NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
          .setInputCol("text") 
          .setOutputCol("document")

val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
       .setInputCols(Array("document"))
       .setOutputCol("sentence")

val tokenizer = new Tokenizer() 
    .setInputCols(Array("sentence"))
    .setOutputCol("token")

val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_bert_base_indonesian_NER","id") 
    .setInputCols(Array("sentence", "token")) 
    .setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))

val data = Seq("Saya suka Spark NLP").toDF("text")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: bert_ner_bert_base_indonesian_NER
Compatibility: Spark NLP 4.0.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [ner]
Language: id
Size: 413.2 MB
Case sensitive: true
Max sentence length: 128

References

  • https://huggingface.co/cahya/bert-base-indonesian-NER