Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-multilingual-cased-sem-english
is a English model originally trained by QCRI
.
Predicted Entities
ALT
, CON
, ENT
, EXN
, MOR
, RLI
, EMP
, ROL
, DEF
, FUT
, DOM
, EXS
, UNK
, UOM
, EQA
, EPG
, EXG
, ART
, LES
, NAT
, DEC
, EPT
, QUE
, TOP
, MOY
, NEC
, QUA
, PRO
, PST
, DIS
, COO
, DST
, IMP
, ORG
, REF
, COM
, SUB
, PER
, ETV
, EPS
, EXC
, DOW
, APP
, INT
, PRX
, BUT
, NOT
, EXT
, NOW
, POS
, LOC
, AND
, HAS
, EFS
, ENS
, REL
, NIL
, HAP
, YOC
, IST
, GPE
, ITJ
, SCO
, EXV
, ENG
, ETG
, TIM
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_bert_base_multilingual_cased_sem_english","en") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_bert_base_multilingual_cased_sem_english","en")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.ner.bert.cased_multilingual_base").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_ner_bert_base_multilingual_cased_sem_english |
Compatibility: | Spark NLP 4.0.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | en |
Size: | 665.8 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/QCRI/bert-base-multilingual-cased-sem-english