Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-swedish-cased-neriob is a Swedish model originally trained by KBLab.
Predicted Entities
PER, LOC, LOCORG, EVN, TME, WRK, MSR, OBJ, PRSWRK, OBJORG, ORG, ORGPRS, LOCPRS
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_bert_base_swedish_cased_neriob","sv") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["Jag älskar Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_bert_base_swedish_cased_neriob","sv")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("Jag älskar Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("sv.ner.bert.cased_base.neriob.by_kblab").predict("""Jag älskar Spark NLP""")
Model Information
| Model Name: | bert_ner_bert_base_swedish_cased_neriob |
| Compatibility: | Spark NLP 4.0.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | sv |
| Size: | 465.8 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
- https://huggingface.co/KBLab/bert-base-swedish-cased-neriob