English DistilBertForSequenceClassification Base Uncased model (from mrm8488)

Description

Pretrained DistilBERT Classification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. distilbert-base-uncased-newspop-student is a Spanish model originally trained by mrm8488.

Predicted Entities

palestine, obama, microsoft, economy

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")
  
seq = DistilBertForSequenceClassification.pretrained("distilbert_classifier_base_uncased_newspop_student","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")
    
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq])

data = spark.createDataFrame([["PUT YOUR STRING HERE."]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
      .setInputCol("text") 
      .setOutputCol("document")

val tokenizer = new Tokenizer() 
    .setInputCols(Array("document"))
    .setOutputCol("token")

val seq = DistilBertForSequenceClassification.pretrained("distilbert_classifier_base_uncased_newspop_student","en") 
    .setInputCols(Array("document", "token")) 
    .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq))

val data = Seq("PUT YOUR STRING HERE.").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.distil_bert.news.uncased_base").predict("""PUT YOUR STRING HERE.""")

Model Information

Model Name: distilbert_classifier_base_uncased_newspop_student
Compatibility: Spark NLP 4.0.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: en
Size: 249.8 MB
Case sensitive: true
Max sentence length: 128

References

https://huggingface.co/mrm8488/distilbert-base-uncased-newspop-student