Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-tiny-chinese-ner
is a Chinese model originally trained by ckiplab
.
Predicted Entities
E-WORK_OF_ART
, E-PRODUCT
, S-PERCENT
, E-EVENT
, S-WORK_OF_ART
, E-PERSON
, MONEY
, S-CARDINAL
, E-LAW
, PRODUCT
, S-GPE
, S-LANGUAGE
, E-ORDINAL
, S-MONEY
, E-MONEY
, QUANTITY
, GPE
, S-PERSON
, EVENT
, S-ORG
, E-LOC
, S-QUANTITY
, PERCENT
, E-TIME
, CARDINAL
, S-EVENT
, NORP
, S-LOC
, WORK_OF_ART
, E-PERCENT
, DATE
, S-PRODUCT
, S-LAW
, E-LANGUAGE
, ORG
, ORDINAL
, FAC
, TIME
, LANGUAGE
, LOC
, E-NORP
, E-QUANTITY
, PERSON
, E-GPE
, E-ORG
, S-ORDINAL
, S-DATE
, S-FAC
, E-FAC
, S-NORP
, E-DATE
, LAW
, S-TIME
, E-CARDINAL
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_bert_tiny_chinese_ner","zh") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
+
val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_bert_tiny_chinese_ner","zh")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("zh.ner.bert.tiny").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_ner_bert_tiny_chinese_ner |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | zh |
Size: | 43.3 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/ckiplab/bert-tiny-chinese-ner
- https://github.com/ckiplab/ckip-transformers
- https://muyang.pro
- https://ckip.iis.sinica.edu.tw