Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. heBERT_NER
is a Hebrew model originally trained by avichr
.
Predicted Entities
PERCENT
, DATE
, MONEY
, TIME
, LOC
, ORG
, PERS
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_heBERT_NER","he") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["אני אוהב את Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_heBERT_NER","he")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("אני אוהב את Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | bert_ner_heBERT_NER |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | he |
Size: | 408.7 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/avichr/heBERT_NER
- https://oscar-corpus.com/
- https://arxiv.org/abs/1810.04805
- https://www.cs.bgu.ac.il/~elhadad/nlpproj/naama/
- https://dumps.wikimedia.org/
- https://colab.research.google.com/drive/1Jw3gOWjwVMcZslu-ttXoNeD17lms1-ff?usp=sharing
- https://github.com/avichaychriqui/HeBERT