Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. meddocan-beto-ner
is a Spanish model originally trained by rjuez00
.
Predicted Entities
CALLE
, NUMERO_FAX
, FECHAS
, CENTRO_SALUD
, INSTITUCION
, PROFESION
, ID_EMPLEO_PERSONAL_SANITARIO
, SEXO_SUJETO_ASISTENCIA
, PAIS
, FAMILIARES_SUJETO_ASISTENCIA
, EDAD_SUJETO_ASISTENCIA
, CORREO_ELECTRONICO
, NUMERO_TELEFONO
, HOSPITAL
, ID_CONTACTO_ASISTENCIAL
, ID_ASEGURAMIENTO
, OTROS_SUJETO_ASISTENCIA
, NOMBRE_SUJETO_ASISTENCIA
, ID_SUJETO_ASISTENCIA
, NOMBRE_PERSONAL_SANITARIO
, ID_TITULACION_PERSONAL_SANITARIO
, TERRITORIO
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_meddocan_beto_ner","es") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["Amo Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_meddocan_beto_ner","es")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("Amo Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("es.ner.beto_bert").predict("""Amo Spark NLP""")
Model Information
Model Name: | bert_ner_meddocan_beto_ner |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | es |
Size: | 410.2 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/rjuez00/meddocan-beto-ner