Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. ner_nerd_fine
is a English model originally trained by ramybaly
.
Predicted Entities
MISC_educationaldegree
, ORG_other
, BUILDING_restaurant
, MISC_law
, LOC_mountain
, ART_other
, MISC_medical
, LOC_other
, PER_athlete
, PRODUCT_food
, MISC_god
, BUILDING_theater
, LOC_GPE
, ORG_media/newspaper
, PRODUCT_other
, ORG_government/governmentagency
, PRODUCT_airplane
, PRODUCT_software
, BUILDING_other
, ART_film
, LOC_park
, LOC_road/railway/highway/transit
, PER_soldier
, PRODUCT_weapon
, EVENT_other
, ORG_sportsleague
, PRODUCT_train
, PER_other
, PER_politician
, EVENT_election
, ORG_company
, PER_director
, BUILDING_sportsfacility
, ART_painting
, BUILDING_airport
, ART_music
, LOC_island
, ORG_politicalparty
, MISC_award
, PRODUCT_ship
, BUILDING_hospital
, ORG_sportsteam
, MISC_livingthing
, MISC_astronomything
, BUILDING_hotel
, MISC_language
, EVENT_attack/battle/war/militaryconflict
, LOC_bodiesofwater
, EVENT_sportsevent
, ORG_religion
, PRODUCT_car
, BUILDING_library
, ORG_education
, MISC_disease
, MISC_currency
, PER_scholar
, EVENT_disaster
, PRODUCT_game
, PER_artist/author
, ART_writtenart
, EVENT_protest
, MISC_chemicalthing
, PER_actor
, MISC_biologything
, ART_broadcastprogram
, ORG_showorganization
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_ner_nerd_fine","en") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_ner_nerd_fine","en")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.ner.bert.nerd_fine.by_ramybaly").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_ner_ner_nerd_fine |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | en |
Size: | 407.9 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/ramybaly/ner_nerd_fine