English BertForTokenClassification Base Cased model (from overfit)

Description

Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. twiner-bert-base-mtl is a English model originally trained by overfit.

Predicted Entities

ORG, EVE, NAT, PER, POG, LOC

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
        .setInputCol("text") \
        .setOutputCol("document")

sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
       .setInputCols(["document"])\
       .setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols("sentence") \
    .setOutputCol("token")

tokenClassifier = BertForTokenClassification.pretrained("bert_ner_twiner_bert_base_mtl","en") \
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("ner")

pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
          .setInputCol("text") 
          .setOutputCol("document")

val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
       .setInputCols(Array("document"))
       .setOutputCol("sentence")

val tokenizer = new Tokenizer() 
    .setInputCols(Array("sentence"))
    .setOutputCol("token")

val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_twiner_bert_base_mtl","en") 
    .setInputCols(Array("sentence", "token")) 
    .setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))

val data = Seq("PUT YOUR STRING HERE").toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.ner.bert.twiner.base_mtl.by_overfit").predict("""PUT YOUR STRING HERE""")

Model Information

Model Name: bert_ner_twiner_bert_base_mtl
Compatibility: Spark NLP 4.1.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [ner]
Language: en
Size: 607.0 MB
Case sensitive: true
Max sentence length: 128

References

  • https://huggingface.co/overfit/twiner-bert-base-mtl
  • https://www.linkedin.com/in/mohammadmahdi-aghajani-821843147/
  • https://www.linkedin.com/in/aliakbarbadri/
  • https://t.me/nlp_stuff
  • https://www.linkedin.com/in/hamid-beigy-8982604b/
  • https://github.com/AliAkbarBadri
  • https://aclanthology.org/2021.wnut-1.16/
  • https://github.com/mmaghajani
  • https://github.com/overfit-ir