Description
Pretrained VIT model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.image_classifier_vit_base_beans_demo_v5
is a English model originally trained by Miss.
Predicted Entities
lion
, tulip
, keyboard
, cra
, bus
, dolphin
, plate
, beaver
, skyscraper
, tiger
, bear
, trout
, porcupine
, sea
, shrew
, squirrel
, snail
, leopard
, palm_tree
, turtle
, orchid
, skunk
, hamster
, oak_tree
, lizard
, bridge
, sunflower
, pickup_truck
, orange
, man
, mouse
, cup
, whale
, seal
, television
, snake
, crocodile
, cockroach
, bed
, otter
, caterpillar
, woman
, rocket
, butterfly
, bicycle
, spider
, motorcycle
, lawn_mower
, wolf
, raccoon
, can
, cloud
, clock
, worm
, tank
, ray
, house
, girl
, dinosaur
, willow_tree
, maple_tree
, kangaroo
, cattle
, bee
, chair
, aquarium_fish
, shark
, baby
, tractor
, sweet_pepper
, plain
, lamp
, boy
, telephone
, mushroom
, couch
, apple
, wardrobe
, train
, pine_tree
, pear
, road
, mountain
, castle
, bowl
, lobster
, elephant
, beetle
, possum
, forest
, flatfish
, poppy
, fox
, streetcar
, chimpanzee
, bottle
, rose
, rabbit
, table
, camel
How to use
image_assembler = ImageAssembler() \
.setInputCol("image") \
.setOutputCol("image_assembler")
imageClassifier = ViTForImageClassification \
.pretrained("image_classifier_vit_base_beans_demo_v5", "en")\
.setInputCols("image_assembler") \
.setOutputCol("class")
pipeline = Pipeline(stages=[
image_assembler,
imageClassifier,
])
pipelineModel = pipeline.fit(imageDF)
pipelineDF = pipelineModel.transform(imageDF)
val imageAssembler = new ImageAssembler()
.setInputCol("image")
.setOutputCol("image_assembler")
val imageClassifier = ViTForImageClassification
.pretrained("image_classifier_vit_base_beans_demo_v5", "en")
.setInputCols("image_assembler")
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(imageAssembler, imageClassifier))
val pipelineModel = pipeline.fit(imageDF)
val pipelineDF = pipelineModel.transform(imageDF)
import nlu
import requests
response = requests.get('https://raw.githubusercontent.com/JohnSnowLabs/spark-nlp/master/docs/assets/images/hen.JPEG')
with open('hen.JPEG', 'wb') as f:
f.write(response.content)
nlu.load("en.classify_image.base_beans_demo_v5").predict("hen.JPEG")
Model Information
Model Name: | image_classifier_vit_base_beans_demo_v5 |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [image_assembler] |
Output Labels: | [class] |
Language: | en |
Size: | 322.2 MB |