Description
Pretrained VIT model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.image_classifier_vit_baseball_stadium_foods
is a English model originally trained by nateraw.
Predicted Entities
nachos
, popcorn
, cotton candy
, hot dog
, hamburger
How to use
image_assembler = ImageAssembler() \
.setInputCol("image") \
.setOutputCol("image_assembler")
imageClassifier = ViTForImageClassification \
.pretrained("image_classifier_vit_baseball_stadium_foods", "en")\
.setInputCols("image_assembler") \
.setOutputCol("class")
pipeline = Pipeline(stages=[
image_assembler,
imageClassifier,
])
pipelineModel = pipeline.fit(imageDF)
pipelineDF = pipelineModel.transform(imageDF)
Model Information
Model Name: | image_classifier_vit_baseball_stadium_foods |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [image_assembler] |
Output Labels: | [class] |
Language: | en |
Size: | 321.9 MB |