Description
Pretrained VIT model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.image_classifier_vit_gtsrb_model
is a English model originally trained by bazyl.
Predicted Entities
Children crossing
, Double curve
, Road work
, Yield
, Beware of ice/snow
, Speed limit (70km/h)
, Bicycles crossing
, Roundabout mandatory
, Speed limit (30km/h)
, Keep left
, Dangerous curve left
, No vehicles
, End of no passing
, Bumpy road
, Speed limit (50km/h)
, Turn left ahead
, Speed limit (20km/h)
, General caution
, Speed limit (100km/h)
, End speed + passing limits
, Go straight or right
, Dangerous curve right
, Speed limit (80km/h)
, Slippery road
, Turn right ahead
, No passing veh over 3.5 tons
, Speed limit (60km/h)
, Pedestrians
, Right-of-way at intersection
, Priority road
, End of speed limit (80km/h)
, Road narrows on the right
, No entry
, Stop
, Wild animals crossing
, Veh > 3.5 tons prohibited
, End no passing veh > 3.5 tons
, Go straight or left
, Speed limit (120km/h)
, Ahead only
, Keep right
, Traffic signals
, No passing
How to use
image_assembler = ImageAssembler() \
.setInputCol("image") \
.setOutputCol("image_assembler")
imageClassifier = ViTForImageClassification \
.pretrained("image_classifier_vit_gtsrb_model", "en")\
.setInputCols("image_assembler") \
.setOutputCol("class")
pipeline = Pipeline(stages=[
image_assembler,
imageClassifier,
])
pipelineModel = pipeline.fit(imageDF)
pipelineDF = pipelineModel.transform(imageDF)
val imageAssembler = new ImageAssembler()
.setInputCol("image")
.setOutputCol("image_assembler")
val imageClassifier = ViTForImageClassification
.pretrained("image_classifier_vit_gtsrb_model", "en")
.setInputCols("image_assembler")
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(imageAssembler, imageClassifier))
val pipelineModel = pipeline.fit(imageDF)
val pipelineDF = pipelineModel.transform(imageDF)
import nlu
import requests
response = requests.get('https://raw.githubusercontent.com/JohnSnowLabs/spark-nlp/master/docs/assets/images/hen.JPEG')
with open('hen.JPEG', 'wb') as f:
f.write(response.content)
nlu.load("en.classify_image.gtsrb_model").predict("hen.JPEG")
Model Information
Model Name: | image_classifier_vit_gtsrb_model |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [image_assembler] |
Output Labels: | [class] |
Language: | en |
Size: | 322.0 MB |