Description
Pretrained VIT model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.image_classifier_vit_gtsrb_model is a English model originally trained by bazyl.
Predicted Entities
Children crossing, Double curve, Road work, Yield, Beware of ice/snow, Speed limit (70km/h), Bicycles crossing, Roundabout mandatory, Speed limit (30km/h), Keep left, Dangerous curve left, No vehicles, End of no passing, Bumpy road, Speed limit (50km/h), Turn left ahead, Speed limit (20km/h), General caution, Speed limit (100km/h), End speed + passing limits, Go straight or right, Dangerous curve right, Speed limit (80km/h), Slippery road, Turn right ahead, No passing veh over 3.5 tons, Speed limit (60km/h), Pedestrians, Right-of-way at intersection, Priority road, End of speed limit (80km/h), Road narrows on the right, No entry, Stop, Wild animals crossing, Veh > 3.5 tons prohibited, End no passing veh > 3.5 tons, Go straight or left, Speed limit (120km/h), Ahead only, Keep right, Traffic signals, No passing
How to use
image_assembler = ImageAssembler() \
.setInputCol("image") \
.setOutputCol("image_assembler")
imageClassifier = ViTForImageClassification \
.pretrained("image_classifier_vit_gtsrb_model", "en")\
.setInputCols("image_assembler") \
.setOutputCol("class")
pipeline = Pipeline(stages=[
image_assembler,
imageClassifier,
])
pipelineModel = pipeline.fit(imageDF)
pipelineDF = pipelineModel.transform(imageDF)
val imageAssembler = new ImageAssembler()
.setInputCol("image")
.setOutputCol("image_assembler")
val imageClassifier = ViTForImageClassification
.pretrained("image_classifier_vit_gtsrb_model", "en")
.setInputCols("image_assembler")
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(imageAssembler, imageClassifier))
val pipelineModel = pipeline.fit(imageDF)
val pipelineDF = pipelineModel.transform(imageDF)
import nlu
import requests
response = requests.get('https://raw.githubusercontent.com/JohnSnowLabs/spark-nlp/master/docs/assets/images/hen.JPEG')
with open('hen.JPEG', 'wb') as f:
f.write(response.content)
nlu.load("en.classify_image.gtsrb_model").predict("hen.JPEG")
Model Information
| Model Name: | image_classifier_vit_gtsrb_model |
| Compatibility: | Spark NLP 4.1.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [image_assembler] |
| Output Labels: | [class] |
| Language: | en |
| Size: | 322.0 MB |