Description
Pretrained VIT model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.image_classifier_vit_iiif_manuscript_ is a English model originally trained by davanstrien.
Predicted Entities
3rd upper flyleaf verso, Blank leaf recto, 3rd lower flyleaf verso, 2nd lower flyleaf verso, 2nd upper flyleaf verso, flyleaf, 1st upper flyleaf verso, 1st lower flyleaf verso, fol, cover, Lower flyleaf verso, Blank leaf verso, Upper flyleaf verso
How to use
image_assembler = ImageAssembler() \
.setInputCol("image") \
.setOutputCol("image_assembler")
imageClassifier = ViTForImageClassification \
.pretrained("image_classifier_vit_iiif_manuscript_", "en")\
.setInputCols("image_assembler") \
.setOutputCol("class")
pipeline = Pipeline(stages=[
image_assembler,
imageClassifier,
])
pipelineModel = pipeline.fit(imageDF)
pipelineDF = pipelineModel.transform(imageDF)
val imageAssembler = new ImageAssembler()
.setInputCol("image")
.setOutputCol("image_assembler")
val imageClassifier = ViTForImageClassification
.pretrained("image_classifier_vit_iiif_manuscript_", "en")
.setInputCols("image_assembler")
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(imageAssembler, imageClassifier))
val pipelineModel = pipeline.fit(imageDF)
val pipelineDF = pipelineModel.transform(imageDF)
import nlu
import requests
response = requests.get('https://raw.githubusercontent.com/JohnSnowLabs/spark-nlp/master/docs/assets/images/hen.JPEG')
with open('hen.JPEG', 'wb') as f:
f.write(response.content)
nlu.load("en.classify_image.iiif_manuscript_").predict("hen.JPEG")
Model Information
| Model Name: | image_classifier_vit_iiif_manuscript_ |
| Compatibility: | Spark NLP 4.1.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [image_assembler] |
| Output Labels: | [class] |
| Language: | en |
| Size: | 321.9 MB |