Description
Pretrained VIT model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.image_classifier_vit_modeversion1_m6_e4
is a English model originally trained by sudo-s.
Predicted Entities
45
, 98
, 113
, 34
, 67
, 120
, 93
, 142
, 147
, 12
, 66
, 89
, 51
, 124
, 84
, 8
, 73
, 78
, 19
, 100
, 23
, 62
, 135
, 128
, 4
, 121
, 88
, 77
, 40
, 110
, 15
, 11
, 104
, 90
, 9
, 141
, 139
, 132
, 44
, 33
, 117
, 22
, 56
, 55
, 26
, 134
, 50
, 123
, 37
, 68
, 61
, 107
, 13
, 46
, 99
, 24
, 94
, 83
, 35
, 16
, 79
, 5
, 103
, 112
, 72
, 10
, 59
, 144
, 87
, 48
, 21
, 116
, 76
, 138
, 54
, 43
, 148
, 127
, 65
, 71
, 57
, 108
, 32
, 80
, 106
, 137
, 82
, 49
, 6
, 126
, 36
, 1
, 39
, 140
, 17
, 25
, 60
, 14
, 133
, 47
, 122
, 111
, 102
, 31
, 96
, 69
, 95
, 58
, 145
, 64
, 53
, 42
, 75
, 115
, 109
, 0
, 20
, 27
, 70
, 2
, 86
, 38
, 81
, 118
, 92
, 125
, 18
, 101
, 30
, 7
, 143
, 97
, 130
, 114
, 129
, 29
, 41
, 105
, 63
, 3
, 74
, 91
, 52
, 85
, 131
, 28
, 119
, 136
, 146
Live Demo
Open in Colab
Download
Copy S3 URI
How to use
Scala NLU
image_assembler = ImageAssembler () \
. setInputCol ( "image" ) \
. setOutputCol ( "image_assembler" )
imageClassifier = ViTForImageClassification \
. pretrained ( "image_classifier_vit_modeversion1_m6_e4" , "en" ) \
. setInputCols ( "image_assembler" ) \
. setOutputCol ( "class" )
pipeline = Pipeline ( stages = [
image_assembler ,
imageClassifier ,
])
pipelineModel = pipeline . fit ( imageDF )
pipelineDF = pipelineModel . transform ( imageDF )
val imageAssembler = new ImageAssembler ()
. setInputCol ( "image" )
. setOutputCol ( "image_assembler" )
val imageClassifier = ViTForImageClassification
. pretrained ( "image_classifier_vit_modeversion1_m6_e4" , "en" )
. setInputCols ( "image_assembler" )
. setOutputCol ( "class" )
val pipeline = new Pipeline (). setStages ( Array ( imageAssembler , imageClassifier ))
val pipelineModel = pipeline . fit ( imageDF )
val pipelineDF = pipelineModel . transform ( imageDF )
import nlu
import requests
response = requests . get ( 'https://raw.githubusercontent.com/JohnSnowLabs/spark-nlp/master/docs/assets/images/hen.JPEG' )
with open ( 'hen.JPEG' , 'wb' ) as f :
f . write ( response . content )
nlu . load ( "en.classify_image.modeversion1_m6_e4" ). predict ( "hen.JPEG" )
|—|—|
Model Name:
image_classifier_vit_modeversion1_m6_e4
Compatibility:
Spark NLP 4.1.0+
Input Labels:
[image_assembler]