Description
Pretrained VIT model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.image_classifier_vit_modeversion1_m6_e4 is a English model originally trained by sudo-s.
Predicted Entities
45, 98, 113, 34, 67, 120, 93, 142, 147, 12, 66, 89, 51, 124, 84, 8, 73, 78, 19, 100, 23, 62, 135, 128, 4, 121, 88, 77, 40, 110, 15, 11, 104, 90, 9, 141, 139, 132, 44, 33, 117, 22, 56, 55, 26, 134, 50, 123, 37, 68, 61, 107, 13, 46, 99, 24, 94, 83, 35, 16, 79, 5, 103, 112, 72, 10, 59, 144, 87, 48, 21, 116, 76, 138, 54, 43, 148, 127, 65, 71, 57, 108, 32, 80, 106, 137, 82, 49, 6, 126, 36, 1, 39, 140, 17, 25, 60, 14, 133, 47, 122, 111, 102, 31, 96, 69, 95, 58, 145, 64, 53, 42, 75, 115, 109, 0, 20, 27, 70, 2, 86, 38, 81, 118, 92, 125, 18, 101, 30, 7, 143, 97, 130, 114, 129, 29, 41, 105, 63, 3, 74, 91, 52, 85, 131, 28, 119, 136, 146
Live Demo
Open in Colab
Download
Copy S3 URI
How to use
Scala NLU
image_assembler = ImageAssembler () \
. setInputCol ( "image" ) \
. setOutputCol ( "image_assembler" )
imageClassifier = ViTForImageClassification \
. pretrained ( "image_classifier_vit_modeversion1_m6_e4" , "en" ) \
. setInputCols ( "image_assembler" ) \
. setOutputCol ( "class" )
pipeline = Pipeline ( stages = [
image_assembler ,
imageClassifier ,
])
pipelineModel = pipeline . fit ( imageDF )
pipelineDF = pipelineModel . transform ( imageDF )
val imageAssembler = new ImageAssembler ()
. setInputCol ( "image" )
. setOutputCol ( "image_assembler" )
val imageClassifier = ViTForImageClassification
. pretrained ( "image_classifier_vit_modeversion1_m6_e4" , "en" )
. setInputCols ( "image_assembler" )
. setOutputCol ( "class" )
val pipeline = new Pipeline (). setStages ( Array ( imageAssembler , imageClassifier ))
val pipelineModel = pipeline . fit ( imageDF )
val pipelineDF = pipelineModel . transform ( imageDF )
import nlu
import requests
response = requests . get ( 'https://raw.githubusercontent.com/JohnSnowLabs/spark-nlp/master/docs/assets/images/hen.JPEG' )
with open ( 'hen.JPEG' , 'wb' ) as f :
f . write ( response . content )
nlu . load ( "en.classify_image.modeversion1_m6_e4" ). predict ( "hen.JPEG" )
|—|—|
Model Name:
image_classifier_vit_modeversion1_m6_e4
Compatibility:
Spark NLP 4.1.0+
Input Labels:
[image_assembler]