English image_classifier_vit_pond ViTForImageClassification from SummerChiam

Description

Pretrained VIT model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.image_classifier_vit_pond is a English model originally trained by SummerChiam.

Predicted Entities

NormalCement0, Boiling0, NormalNight0, Algae0, BoilingNight0, NormalRain0, Normal0

Download Copy S3 URI

How to use




image_assembler = ImageAssembler() \

    .setInputCol("image") \

    .setOutputCol("image_assembler")



imageClassifier = ViTForImageClassification \

    .pretrained("image_classifier_vit_pond", "en")\

    .setInputCols("image_assembler") \

    .setOutputCol("class")



pipeline = Pipeline(stages=[

    image_assembler,

    imageClassifier,

])



pipelineModel = pipeline.fit(imageDF)



pipelineDF = pipelineModel.transform(imageDF)




val imageAssembler = new ImageAssembler()

.setInputCol("image")

.setOutputCol("image_assembler")



val imageClassifier = ViTForImageClassification

.pretrained("image_classifier_vit_pond", "en")

.setInputCols("image_assembler")

.setOutputCol("class")



val pipeline = new Pipeline().setStages(Array(imageAssembler, imageClassifier))



val pipelineModel = pipeline.fit(imageDF)



val pipelineDF = pipelineModel.transform(imageDF)



import nlu
import requests
response = requests.get('https://raw.githubusercontent.com/JohnSnowLabs/spark-nlp/master/docs/assets/images/hen.JPEG')
with open('hen.JPEG', 'wb') as f:
    f.write(response.content)
nlu.load("en.classify_image.pond").predict("hen.JPEG")

Model Information

|—|—|

Model Name: image_classifier_vit_pond
Compatibility: Spark NLP 4.1.0+
License: Open Source
Edition: Official
Input Labels: [image_assembler]
Output Labels: [class]
Language: en
Size: 321.9 MB