Persian XLMRobertaForTokenClassification Base Cased model (from BK-V)

Description

Pretrained XLMRobertaForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. xlm-roberta-base-finetuned-arman-fa is a Persian model originally trained by BK-V.

Predicted Entities

pers, event, org, loc, pro, fac

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

token_classifier = XlmRoBertaForTokenClassification.pretrained("xlmroberta_ner_base_finetuned_arman","fa") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("ner")

ner_converter = NerConverter()\
    .setInputCols(["document", "token", "ner"])\
    .setOutputCol("ner_chunk")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, token_classifier, ner_converter])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
      .setInputCols(Array("text"))
      .setOutputCols(Array("document"))

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val token_classifier = XlmRoBertaForTokenClassification.pretrained("xlmroberta_ner_base_finetuned_arman","fa")
    .setInputCols(Array("document", "token"))
    .setOutputCol("ner")

val ner_converter = new NerConverter()
    .setInputCols(Array("document", "token', "ner"))
    .setOutputCol("ner_chunk")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, token_classifier, ner_converter))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("fa.ner.xlmr_roberta.arman_xtreme.base_finetuned").predict("""PUT YOUR STRING HERE""")

Model Information

Model Name: xlmroberta_ner_base_finetuned_arman
Compatibility: Spark NLP 4.1.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [ner]
Language: fa
Size: 841.7 MB
Case sensitive: true
Max sentence length: 256

References

  • https://huggingface.co/BK-V/xlm-roberta-base-finetuned-arman-fa