Description
Pretrained XLMRobertaForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. xlm-roberta-base-uncased-all-english
is a English model originally trained by tner
.
Predicted Entities
actor
, time
, corporation
, ordinal number
, cardinal number
, restaurant
, director
, rna
, geopolitical area
, rating
, protein
, percent
, product
, plot
, dna
, disease
, cell line
, law
, other
, quote
, date
, soundtrack
, origin
, amenity
, chemical
, event
, cuisine
, dish
, work of art
, genre
, cell type
, location
, language
, quantity
, award
, character name
, facility
, relationship
, organization
, opinion
, group
, money
, person
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
token_classifier = XlmRoBertaForTokenClassification.pretrained("xlmroberta_ner_base_uncased_all_english","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("ner")
ner_converter = NerConverter()\
.setInputCols(["document", "token", "ner"])\
.setOutputCol("ner_chunk")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, token_classifier, ner_converter])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val token_classifier = XlmRoBertaForTokenClassification.pretrained("xlmroberta_ner_base_uncased_all_english","en")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val ner_converter = new NerConverter()
.setInputCols(Array("document", "token', "ner"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, token_classifier, ner_converter))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.ner.xlmr_roberta.all_english.uncased_base.by_tner").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | xlmroberta_ner_base_uncased_all_english |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | en |
Size: | 804.6 MB |
Case sensitive: | false |
Max sentence length: | 256 |
References
- https://huggingface.co/tner/xlm-roberta-base-uncased-all-english
- https://github.com/asahi417/tner