Description
Pretrained DistilBertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. distilbert_MultiClass_TextClassification is a English model originally trained by palakagl.
Predicted Entities
weather_query, iot_hue_lightdim, audio_volume_up, general_praise, iot_cleaning, alarm_set, music_query, email_querycontact, play_podcasts, play_radio, transport_query, lists_query, music_settings, play_game, general_repeat, qa_maths, iot_hue_lightoff, iot_hue_lightchange, play_music, play_audiobook, alarm_query, music_likeness, lists_remove, qa_definition, general_commandstop, recommendation_events, general_confirm, recommendation_locations, social_query, general_dontcare, email_addcontact, general_negate, general_joke, general_quirky, cooking_recipe, datetime_query, news_query, qa_factoid, general_affirm, audio_volume_down, lists_createoradd, calendar_set, audio_volume_mute, general_explain, datetime_convert, iot_wemo_off, transport_traffic, calendar_query, alarm_remove, calendar_remove, qa_currency, iot_hue_lighton, iot_wemo_on, email_sendemail, transport_taxi, iot_hue_lightup, recommendation_movies, social_post, qa_stock, takeaway_order, email_query, transport_ticket, takeaway_query, iot_coffee
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier_loaded = DistilBertForSequenceClassification.pretrained("distilbert_sequence_classifier_distilbert_MultiClass_TextClassification","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier_loaded = DistilBertForSequenceClassification.pretrained("distilbert_sequence_classifier_distilbert_MultiClass_TextClassification","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | distilbert_sequence_classifier_distilbert_MultiClass_TextClassification |
| Compatibility: | Spark NLP 4.1.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | en |
| Size: | 246.5 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
- https://huggingface.co/palakagl/distilbert_MultiClass_TextClassification