English DistilBertForSequenceClassification Cased model (from palakagl)

Description

Pretrained DistilBertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. distilbert_MultiClass_TextClassification is a English model originally trained by palakagl.

Predicted Entities

weather_query, iot_hue_lightdim, audio_volume_up, general_praise, iot_cleaning, alarm_set, music_query, email_querycontact, play_podcasts, play_radio, transport_query, lists_query, music_settings, play_game, general_repeat, qa_maths, iot_hue_lightoff, iot_hue_lightchange, play_music, play_audiobook, alarm_query, music_likeness, lists_remove, qa_definition, general_commandstop, recommendation_events, general_confirm, recommendation_locations, social_query, general_dontcare, email_addcontact, general_negate, general_joke, general_quirky, cooking_recipe, datetime_query, news_query, qa_factoid, general_affirm, audio_volume_down, lists_createoradd, calendar_set, audio_volume_mute, general_explain, datetime_convert, iot_wemo_off, transport_traffic, calendar_query, alarm_remove, calendar_remove, qa_currency, iot_hue_lighton, iot_wemo_on, email_sendemail, transport_taxi, iot_hue_lightup, recommendation_movies, social_post, qa_stock, takeaway_order, email_query, transport_ticket, takeaway_query, iot_coffee

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
        .setInputCol("text") \
        .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

sequenceClassifier_loaded = DistilBertForSequenceClassification.pretrained("distilbert_sequence_classifier_distilbert_MultiClass_TextClassification","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")

pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
          .setInputCol("text") 
          .setOutputCol("document")

val tokenizer = new Tokenizer() 
    .setInputCols(Array("document"))
    .setOutputCol("token")

val sequenceClassifier_loaded = DistilBertForSequenceClassification.pretrained("distilbert_sequence_classifier_distilbert_MultiClass_TextClassification","en") 
    .setInputCols(Array("document", "token")) 
    .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))

val data = Seq("PUT YOUR STRING HERE").toDF("text")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: distilbert_sequence_classifier_distilbert_MultiClass_TextClassification
Compatibility: Spark NLP 4.1.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [ner]
Language: en
Size: 246.5 MB
Case sensitive: true
Max sentence length: 128

References

  • https://huggingface.co/palakagl/distilbert_MultiClass_TextClassification