Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-arabic-camelbert-da-poetry is a Arabic model originally trained by CAMeL-Lab.
Predicted Entities
المواليا, الهزج, المجتث, الدوبيت, البسيط, المتدارك, شعر حر, الرجز, المنسرح, الكامل, المديد, المقتضب, الوافر, السريع, المتقارب, الرمل, عامي, الخفيف, شعر التفعيلة, المضارع, الطويل, السلسلة, موشح
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_bert_base_arabic_camelbert_da_poetry","ar") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_bert_base_arabic_camelbert_da_poetry","ar")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_classifier_bert_base_arabic_camelbert_da_poetry |
| Compatibility: | Spark NLP 4.1.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | ar |
| Size: | 409.7 MB |
| Case sensitive: | true |
| Max sentence length: | 256 |
References
- https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da-poetry
- https://arxiv.org/pdf/1905.05700.pdf
- https://arxiv.org/abs/2103.06678
- https://github.com/CAMeL-Lab/CAMeLBERT
- https://github.com/CAMeL-Lab/camel_tools