Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-japanese-v2-wrime-fine-tune
is a Japanese model originally trained by patrickramosobf
.
Predicted Entities
writer_joy
, writer_trust
, reader_joy
, writer_fear
, writer_anger
, reader_disgust
, reader_sadness
, reader_surprise
, reader_anger
, reader_anticipation
, writer_disgust
, reader_trust
, writer_surprise
, writer_anticipation
, reader_fear
, writer_sadness
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_bert_base_japanese_v2_wrime_fine_tune","ja") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_bert_base_japanese_v2_wrime_fine_tune","ja")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("ja.classify.bert.v2_base").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_classifier_bert_base_japanese_v2_wrime_fine_tune |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | ja |
Size: | 417.5 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
- https://huggingface.co/patrickramosobf/bert-base-japanese-v2-wrime-fine-tune
- https://github.com/ids-cv/wrime
- https://aclanthology.org/2022.wassa-1.10/
- https://github.com/PatrickJohnRamos/BERT-Japan-vaccination