Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. ESG-BERT
is a English model originally trained by nbroad
.
Predicted Entities
Waste_And_Hazardous_Materials_Management
, Management_Of_Legal_And_Regulatory_Framework
, Air_Quality
, GHG_Emissions
, Business_Model_Resilience
, Water_And_Wastewater_Management
, Systemic_Risk_Management
, Director_Removal
, Data_Security
, Employee_Engagement_Inclusion_And_Diversity
, Access_And_Affordability
, Competitive_Behavior
, Ecological_Impacts
, Employee_Health_And_Safety
, Supply_Chain_Management
, Critical_Incident_Risk_Management
, Business_Ethics
, Product_Design_And_Lifecycle_Management
, Energy_Management
, Labor_Practices
, Physical_Impacts_Of_Climate_Change
, Product_Quality_And_Safety
, Human_Rights_And_Community_Relations
, Customer_Welfare
, Customer_Privacy
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_esg","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_esg","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.bert.by_nbroad").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_classifier_esg |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | en |
Size: | 410.5 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
- https://huggingface.co/nbroad/ESG-BERT
- https://github.com/mukut03/ESG-BERT