English BertForSequenceClassification Cased model (from vinaydngowda)

Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. Robertabase_Ana4 is a English model originally trained by vinaydngowda.

Predicted Entities

Student loan, Credit reporting, credit repair services, or other personal consumer reports, Credit card or prepaid card, Money transfer, virtual currency, or money service, Vehicle loan or lease, Payday loan, title loan, or personal loan, Debt collection, Mortgage, Checking or savings account

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_robertabase_ana4","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
      .setInputCols(Array("text"))
      .setOutputCols(Array("document"))

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_robertabase_ana4","en")
    .setInputCols(Array("document", "token"))
    .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.bert.by_vinaydngowda").predict("""PUT YOUR STRING HERE""")

Model Information

Model Name: bert_classifier_robertabase_ana4
Compatibility: Spark NLP 4.1.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: en
Size: 1.3 GB
Case sensitive: true
Max sentence length: 256

References

  • https://huggingface.co/vinaydngowda/Robertabase_Ana4