Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-fa-base-uncased-clf-persiannews
is a Persian model originally trained by HooshvareLab
.
Predicted Entities
ورزشی
, اجتماعی
, پزشکی
, بین الملل
, اقتصادی
, فرهنگی هنری
, سیاسی
, علمی فناوری
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_bert_fa_base_uncased_clf_persiannews","fa") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_bert_fa_base_uncased_clf_persiannews","fa")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | bert_classifier_bert_fa_base_uncased_clf_persiannews |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | fa |
Size: | 609.4 MB |
Case sensitive: | false |
Max sentence length: | 256 |
References
- https://huggingface.co/HooshvareLab/bert-fa-base-uncased-clf-persiannews
- https://github.com/hooshvare/parsbert
- https://drive.google.com/uc?id=1B6xotfXCcW9xS1mYSBQos7OCg0ratzKC