Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert_MultiClass_TextClassification is a English model originally trained by palakagl.
Predicted Entities
iot_hue_lightchange, calendar_set, recommendation_movies, iot_coffee, general_commandstop, iot_wemo_on, general_negate, transport_traffic, general_repeat, play_music, audio_volume_mute, transport_query, qa_definition, calendar_query, social_post, general_affirm, lists_query, general_dontcare, qa_stock, general_confirm, datetime_query, play_audiobook, audio_volume_up, iot_hue_lighton, weather_query, iot_cleaning, audio_volume_down, play_radio, iot_hue_lightoff, takeaway_order, alarm_query, social_query, general_joke, alarm_set, play_podcasts, cooking_recipe, recommendation_locations, calendar_remove, news_query, takeaway_query, email_query, transport_ticket, lists_createoradd, alarm_remove, music_settings, qa_factoid, email_querycontact, music_likeness, iot_hue_lightup, email_sendemail, general_quirky, play_game, qa_maths, datetime_convert, general_explain, iot_wemo_off, recommendation_events, email_addcontact, iot_hue_lightdim, music_query, transport_taxi, general_praise, qa_currency, lists_remove
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_bert_multiclass_textclassification","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_bert_multiclass_textclassification","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.multi.bert.by_palakagl").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | bert_classifier_bert_multiclass_textclassification |
| Compatibility: | Spark NLP 4.1.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | en |
| Size: | 410.3 MB |
| Case sensitive: | true |
| Max sentence length: | 256 |
References
- https://huggingface.co/palakagl/bert_MultiClass_TextClassification