Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert_TextClassification
is a English model originally trained by palakagl
.
Predicted Entities
iot_hue_lightchange
, calendar_set
, recommendation_movies
, iot_coffee
, general_commandstop
, iot_wemo_on
, general_negate
, transport_traffic
, general_repeat
, play_music
, audio_volume_mute
, transport_query
, qa_definition
, calendar_query
, social_post
, general_affirm
, lists_query
, general_dontcare
, qa_stock
, general_confirm
, datetime_query
, play_audiobook
, audio_volume_up
, iot_hue_lighton
, weather_query
, iot_cleaning
, audio_volume_down
, play_radio
, iot_hue_lightoff
, takeaway_order
, alarm_query
, social_query
, general_joke
, alarm_set
, play_podcasts
, cooking_recipe
, recommendation_locations
, calendar_remove
, news_query
, takeaway_query
, email_query
, transport_ticket
, lists_createoradd
, alarm_remove
, music_settings
, qa_factoid
, email_querycontact
, music_likeness
, iot_hue_lightup
, email_sendemail
, general_quirky
, play_game
, qa_maths
, datetime_convert
, general_explain
, iot_wemo_off
, recommendation_events
, email_addcontact
, iot_hue_lightdim
, music_query
, transport_taxi
, general_praise
, qa_currency
, lists_remove
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_bert_textclassification","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_bert_textclassification","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.bert.by_palakagl").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_classifier_bert_textclassification |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | en |
Size: | 406.7 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
- https://huggingface.co/palakagl/bert_TextClassification