Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. gbert-large-jobad-classification-34
is a German model originally trained by dbb
.
Predicted Entities
hr/recruiting
, chem. pharm. ausbildung
, vertrieb/kundenbetreuung
, kaufm. studium
, beschaffung/supply chain
, med. tech. beruf
, it studium
, log. ausbildung
, it ausbildung
, it
, med. ausbildung
, pflege/therapie
, tech. ausbildung
, logistik/transport
, gastro. touri. ausbildung
, bildung/soziales
, administration/sekretariat
, kaufm. ausbildung
, controlling/finanzen
, labor/forschung
, indust. produktion
, chem. pharm. beruf
, rettungsdienst/sicherheit
, recht/justiz
, med. verwaltung
, quali. kontr./-management
, marketing/kommunikation
, tech. studium
, gastro./tourismus
, indust. konstruk./ingenieur
, mechaniker/techniker/elektriker
, arzt
, hausverw./-bewirt.
, baugewerbe/-ingenieur
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_gbert_large_jobad_classification_34","de") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_gbert_large_jobad_classification_34","de")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("de.classify.bert.large").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_classifier_gbert_large_jobad_classification_34 |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | de |
Size: | 1.3 GB |
Case sensitive: | true |
Max sentence length: | 256 |
References
- https://huggingface.co/dbb/gbert-large-jobad-classification-34