Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. industry-classification-api
is a English model originally trained by sampathkethineedi
.
Predicted Entities
Casinos & Gaming
, Apparel, Accessories & Luxury Goods
, Research & Consulting Services
, Restaurants
, Oil & Gas Equipment & Services
, Consumer Finance
, Industrial Machinery
, Health Care Technology
, Specialty Chemicals
, Regional Banks
, Auto Parts & Equipment
, Biotechnology
, Construction Machinery & Heavy Trucks
, Interactive Media & Services
, Internet Services & Infrastructure
, Systems Software
, Gold
, Packaged Foods & Meats
, Construction & Engineering
, Asset Management & Custody Banks
, Data Processing & Outsourced Services
, Pharmaceuticals
, Specialty Stores
, Oil & Gas Storage & Transportation
, Technology Hardware, Storage & Peripherals
, Movies & Entertainment
, Personal Products
, Oil & Gas Exploration & Production
, Health Care Facilities
, Commodity Chemicals
, Real Estate Operating Companies
, Human Resource & Employment Services
, Health Care Equipment
, Communications Equipment
, Oil & Gas Refining & Marketing
, Aerospace & Defense
, Leisure Products
, Apparel Retail
, Diversified Support Services
, Electric Utilities
, Hotels, Resorts & Cruise Lines
, Life Sciences Tools & Services
, Diversified Metals & Mining
, Building Products
, Investment Banking & Brokerage
, Semiconductors
, Application Software
, Internet & Direct Marketing Retail
, Health Care Services
, Homebuilding
, Trading Companies & Distributors
, Advertising
, Environmental & Facilities Services
, Steel
, Integrated Telecommunication Services
, Health Care Supplies
, Electrical Components & Equipment
, Thrifts & Mortgage Finance
, Technology Distributors
, Electronic Equipment & Instruments
, Property & Casualty Insurance
, IT Consulting & Other Services
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_industry_classification_api","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_industry_classification_api","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.bert.by_sampathkethineedi").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_classifier_industry_classification_api |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | en |
Size: | 410.2 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
- https://huggingface.co/sampathkethineedi/industry-classification-api