Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. industry-classification-api is a English model originally trained by sampathkethineedi.
Predicted Entities
Casinos & Gaming, Apparel, Accessories & Luxury Goods, Research & Consulting Services, Restaurants, Oil & Gas Equipment & Services, Consumer Finance, Industrial Machinery, Health Care Technology, Specialty Chemicals, Regional Banks, Auto Parts & Equipment, Biotechnology, Construction Machinery & Heavy Trucks, Interactive Media & Services, Internet Services & Infrastructure, Systems Software, Gold, Packaged Foods & Meats, Construction & Engineering, Asset Management & Custody Banks, Data Processing & Outsourced Services, Pharmaceuticals, Specialty Stores, Oil & Gas Storage & Transportation, Technology Hardware, Storage & Peripherals, Movies & Entertainment, Personal Products, Oil & Gas Exploration & Production, Health Care Facilities, Commodity Chemicals, Real Estate Operating Companies, Human Resource & Employment Services, Health Care Equipment, Communications Equipment, Oil & Gas Refining & Marketing, Aerospace & Defense, Leisure Products, Apparel Retail, Diversified Support Services, Electric Utilities, Hotels, Resorts & Cruise Lines, Life Sciences Tools & Services, Diversified Metals & Mining, Building Products, Investment Banking & Brokerage, Semiconductors, Application Software, Internet & Direct Marketing Retail, Health Care Services, Homebuilding, Trading Companies & Distributors, Advertising, Environmental & Facilities Services, Steel, Integrated Telecommunication Services, Health Care Supplies, Electrical Components & Equipment, Thrifts & Mortgage Finance, Technology Distributors, Electronic Equipment & Instruments, Property & Casualty Insurance, IT Consulting & Other Services
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_industry_classification_api","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_industry_classification_api","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.bert.by_sampathkethineedi").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | bert_classifier_industry_classification_api |
| Compatibility: | Spark NLP 4.1.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | en |
| Size: | 410.2 MB |
| Case sensitive: | true |
| Max sentence length: | 256 |
References
- https://huggingface.co/sampathkethineedi/industry-classification-api