Description
Pretrained ElectraForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. kote_for_easygoing_people is a Korean model originally trained by searle-j.
Predicted Entities
깨달음, 놀람, 기쁨, 부담/안_내킴, 우쭐댐/무시함, 공포/무서움, 흐뭇함(귀여움/예쁨), 환영/호의, 부끄러움, 화남/분노, 패배/자기혐오, 귀찮음, 짜증, 불쌍함/연민, 증오/혐오, 기대감, 안심/신뢰, 행복, 재미없음, 절망, 비장함, 어이없음, 지긋지긋, 불평/불만, 고마움, 안타까움/실망, 불안/걱정, 즐거움/신남, 한심함, 뿌듯함, 슬픔, 죄책감, 경악, 없음, 역겨움/징그러움, 힘듦/지침, 신기함/관심, 편안/쾌적, 당황/난처, 의심/불신, 감동/감탄, 아껴주는, 존경, 서러움
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = BertForSequenceClassification.pretrained("electra_classifier_kote_for_easygoing_people","ko") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = BertForSequenceClassification.pretrained("electra_classifier_kote_for_easygoing_people","ko")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | electra_classifier_kote_for_easygoing_people |
| Compatibility: | Spark NLP 4.1.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | ko |
| Size: | 467.6 MB |
| Case sensitive: | true |
| Max sentence length: | 256 |
References
- https://huggingface.co/searle-j/kote_for_easygoing_people