Turkish ElectraForSequenceClassification Cased model (from kuzgunlar)

Description

Pretrained ElectraForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. electra-turkish-sentiment-analysis is a Turkish model originally trained by kuzgunlar.

Predicted Entities

Negative, Positive

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

seq_classifier = BertForSequenceClassification.pretrained("electra_classifier_turkish_sentiment_analysis","tr") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
      .setInputCols(Array("text"))
      .setOutputCols(Array("document"))

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val seq_classifier = BertForSequenceClassification.pretrained("electra_classifier_turkish_sentiment_analysis","tr")
    .setInputCols(Array("document", "token"))
    .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("tr.classify.electra.sentiment.").predict("""PUT YOUR STRING HERE""")

Model Information

Model Name: electra_classifier_turkish_sentiment_analysis
Compatibility: Spark NLP 4.1.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: tr
Size: 415.1 MB
Case sensitive: true
Max sentence length: 256

References

  • https://huggingface.co/kuzgunlar/electra-turkish-sentiment-analysis