Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. english_news_classification_headlines is a Multilingual model originally trained by M47Labs.
Predicted Entities
arts, culture, entertainment and media, religion and belief, science and technology, economy, business and finance, conflict, war and peace, health, society, weather, enviroment, sport, politics, education, disaster, accident and emergency incident, lifestyle and leisure, crime, law and justice, labour
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_english_news_classification_headlines","xx") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_english_news_classification_headlines","xx")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("xx.classify.bert.news.").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | bert_classifier_english_news_classification_headlines |
| Compatibility: | Spark NLP 4.1.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | xx |
| Size: | 410.0 MB |
| Case sensitive: | true |
| Max sentence length: | 256 |
References
- https://huggingface.co/M47Labs/english_news_classification_headlines